Abstract

Motivated by the recent observation of correlated insulator states and unconventional superconductivity in twisted bilayer graphene, we study the dependence of electron correlations on the twist angle and reveal the existence of strong correlations over a narrow range of twist-angles near the magic angle. Specifically, we determine the on-site and extended Hubbard parameters of the low-energy Wannier states using an atomistic quantum-mechanical approach. The ratio of the on-site Hubbard parameter and the width of the flat bands, which is an indicator of the strength of electron correlations, depends sensitively on the screening by the semiconducting substrate and the metallic gates. Including the effect of long-ranged Coulomb interactions significantly reduces electron correlations and explains the experimentally observed sensitivity of strong correlation phenomena on twist angle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call