Abstract

The bHLH transcription factor Twist1 has emerged as a negative regulator of chondrogenesis in skeletal progenitor cells and as an inhibitor of maturation in growth plate chondrocytes. However, its role in articular cartilage remains obscure. Here we examine Twist1 expression during re-differentiation of expanded human articular chondrocytes, the distribution of Twist1 proteins in normal versus OA human articular cartilage, and its role in modulating OA development in mice. High levels of Twist1 transcripts were detected by qPCR analyses of expanded de-differentiated human articular chondrocytes that had acquired mesenchymal-like features. The induction of hallmark cartilage genes by Bmp-2 mediated chondrogenic differentiation was paralleled by the dramatic suppression of Twist1 in vitro. In normal human articular cartilage, Twist1-expressing chondrocytes were most abundant in the superficial zone with little to no expression in the middle and deep zones. However, our analyses revealed a higher proportion of deep zone articular chondrocytes expressing Twist1 in human OA cartilage as compared to normal articular cartilage. Moreover, Twist1 expression was prominent within proliferative cell clusters near fissure sites in more severely affected OA samples. To assess the role of Twist1 in OA pathophysiology, we subjected wild type mice and transgenic mice with gain of Twist1 function in cartilage to surgical destabilization of the medial meniscus. At 12 weeks post-surgery, micro-CT and histological analyses revealed attenuation of the OA phenotype in Twist1 transgenic mice compared to wild type mice. Collectively, the data reveal a role for Twist in articular cartilage maintenance and the attenuation of cartilage degeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.