Abstract
TWIST1 is an important basic helix‐loop‐helix protein linked to multiple physiological and pathological processes. Although TWIST1 is believed to be involved in vascular pathogenesis, its effects on homeostasis of smooth muscle cells (SMCs) remain poorly understood. Here, we show that TWIST1 protein levels were significantly elevated during SMC phenotypic switching in vivo and in vitro. TWIST1 overexpression promoted phenotypic switching of SMCs, while siRNA targeting of TWIST1 prevented cell transition. Mechanistically, TWIST1 decreased the level of microRNA‐143/145, which governs smooth muscle marker gene transcription. In addition, TWIST1 repressed p68 mRNA and protein expression, a crucial modulator of SMC behavior and microRNA biogenesis. Our co‐immunoprecipitation assay demonstrated a previously unrecognized molecular interaction between TWIST1 and p68 protein. Finally, we found that TWIST1 triggered SMC phenotypic switching and suppressed microRNA‐143/145 expression by promoting the proteasomal degradation of p68. These data suggest a novel role of TWIST1 in the regulation of SMC homeostasis by modulating p68/microRNA‐143/145 axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.