Abstract

Hybrid methylammonium lead iodide (MAPbI3) perovskite nanoplatelets (NPLs) have emerged as promising optoelectronic materials because of their remarkable properties in defect tolerance, band gap tunability, and light emission. However, the detailed formation mechanism, in particular the atomic structure information in the initial nucleation stage, stands as a mystery because of the intrinsic vulnerability toward moisture, electron beams, etc. By virtue of the imaging technique under the extremely low electron dose of the cryogenic TEM, atomic structures of MAPbI3 NPLs are imaged, and a twist-to-untwist structural evolution is captured. According to theoretical calculation results, the twist-to-untwist evolution is a spontaneous process, and the band gap will be reduced, which is further verified by the red shift of photoluminescence peaks with aging time. Moreover, MA cation polarization is observed by quantitative analysis of the atomic-resolution image of single-crystalline MAPbI3 NPLs, which demonstrates the high ion mobility in the lattice of the hybrid halide perovskites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.