Abstract
By employing a linearised Boltzmann equation, we calculate the magneto-optical properties of twisted bilayer graphene using non-magnetic wave functions. Both transverse and longitudinal responses are calculated up to the second order in applied magnetic field with their twist angle and Fermi level dependence examined. We find that increasing the twist angle increases the transverse metallic response so long as the Fermi level remains below the upper conduction band. Interlayer transitions provide an appreciable enhancement when the Fermi level traverses the gap between the two conduction bands. Interlayer transitions are also responsible for a nonzero anomalous Hall conductivity in this model. As the Fermi level moves towards zero, the longitudinal response begins to dominate and a highly anisotropic negative magneto-resistance is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.