Abstract

We theoretically study the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides monolayer stacked with arbitrary twist angles. We find that the relative rotation greatly enhances the spin splitting of graphene, typically by a few to ten times compared to the non-rotated geometry,and the maximum splitting is achieved around $20^\circ$. The induced SOC can be changed from the Zeeman-type to the Rashba-type by rotation. The spin-splitting is also quite sensitive to the gate-induced potential, and it sharply rises when the graphene's Dirac point is shifted toward the TMDC band. The theoretical method does not need the exact lattice matching and it is applicable to any incommensurate bilayer systems. It is useful for the twist-angle engineering of a variety of van der Waals proximity effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.