Abstract

The effects of feed moisture, screw speed, and barrel temperature on physical properties of extruded corn flour and soy protein isolate (SPI) blends were investigated in a co-rotating twin-screw extruder using a response surface methodology. Corn flour and SPI were mixed with a ratio of 4:1. The screw speed was set at five levels between 60 and 140 rpm, barrel temperature between 140 °C and 180 °C, and feed moisture between 18% and 38%. All physical properties of the extruded material evaluated—included expansion ratio, bulk density, breaking strength, water solubility index, rehydration ratio, and color—were significantly (p < 0.05) affected by the three process variables. Feed moisture was the most significant variable with quadratic effects on most of the physical properties. Response surface regression models were established to correlate the physical properties of the extruded product to the process variables. Understanding the effect of these variables on the product physical properties was deemed useful for the development of protein-rich extruded products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.