Abstract

Abstract Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and are unable to capture both time and frequency domain fault characteristics of the original signal. To address these limitations, this research introduces a two-channel Transformer fault diagnosis model that integrates time and frequency domain features through a cross-attention mechanism. Initially, the original time-domain fault signal is converted to the frequency domain using the Fast Fourier Transform, followed by global and local feature extraction via a Convolutional Neural Network. Next, through the self-attention mechanism on the two-channel Transformer, separate fault features associated with long distances within each sequence are modeled and then fed into the feature fusion module of the cross-attention mechanism. During the fusion process, frequency domain features serve as the query sequence Q, and time domain features as the key-value pairs K. By calculating the attention weights between Q and K, the model excavates deeper fault features of the original signal. Besides preserving the intrinsic associative information within sequences learned via the self-attention mechanism, the Twins Transformer also models the degree of association between different sequence features using the cross-attention mechanism. Finally, the proposed model's performance was validated using four different experiments on four bearing datasets, achieving average accuracy rates of 99.67%, 98.76%, 98.47%, and 99.41%. These results confirm the model's effective extraction of time and frequency domain correlation features, demonstrating fast convergence, superior performance, and high accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call