Abstract

Spryite (Ag7.98Cu0.05)Σ=8.03(As5+0.31Ge0.36As3+0.31Fe3+0.02)Σ=1.00S5.97, and ideally Ag8(As3+0.5As5+0.5)S6, is a new mineral recently described from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. Its room temperature structure exhibits an orthorhombic symmetry, space group Pna21, with lattice parameters a = 14.984(4), b = 7.474(1), c = 10.571(2) Å, V = 1083.9(4) Å3, Z = 4, and shows the coexistence of As3+ and As5+ distributed in a disordered fashion in a unique mixed position. To analyze the crystal-chemical behaviour of the arsenic distribution at ultra-low temperatures, a structural study was carried out at 30 K by means of in situ single-crystal X-ray diffraction data (helium-cryostat) on the same sample previously characterized from a chemical and structural point of view. At 30 K, spryite still crystallizes with orthorhombic symmetry, space group Pna21, but gives rise to a a × 3b × c superstructure, with a = 14.866(2), b = 22.240(4), c = 10.394(1) Å, V = 3436.5(8) Å3 and Z = 4 (Ag24As3+As5+Ge4+S18 stoichiometry). The twin laws making the twin lattice simulating a perfect hexagonal symmetry have been taken into account and the crystal structure has been solved and refined. The refinement of the structure leads to a residual factor R = 0.0329 for 4070 independent observed reflections [with Fo > 4σ(Fo)] and 408 variables. The threefold superstructure arises from the ordering of As3+ and (As5+, Ge4+) in different crystal-chemical environments.

Highlights

  • Spryite, ideally Ag8 (As3+ 0.5 As5+ 0.5 )S6, is a new mineral belonging to the argyrodite group recently described from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru [1]

  • The presence of disordered As3+ S3 pyramids might be responsible for the absence of superionic conduction, since they can hinder the mobility of the Ag cations that in argyrodites-like structures are highly delocalized over all the available sites, even at room temperature [9]

  • Considering the peculiar structural features and temperature dependence of spryite, we investigated its crystal structure at 30 K, in order to understand the effects of ultra-low temperature on the structure and to verify if the disordered As/Ge position present in the room-temperature structure could give rise to some localized ordering and to a possible superstructure at ultra-low temperature

Read more

Summary

Introduction

Ideally Ag8 (As3+ 0.5 As5+ 0.5 )S6 , is a new mineral belonging to the argyrodite group recently described from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru [1]. The presence of disordered As3+ S3 pyramids might be responsible for the absence of superionic conduction, since they can hinder the mobility of the Ag cations that in argyrodites-like structures are highly delocalized over all the available sites, even at room temperature [9]. This mineral is characterized by a network of non-interacting Ag cation, with all sites fully occupied. Considering the peculiar structural features and temperature dependence of spryite, we investigated its crystal structure at 30 K, in order to understand the effects of ultra-low temperature on the structure and to verify if the disordered As/Ge position present in the room-temperature structure could give rise to some localized ordering and to a possible superstructure at ultra-low temperature

X-ray Crystallography
Statistical
Description of the Low-Temperature Structure and Discussion
Left: Left
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call