Abstract

The crystal structure of the mineral kurilite, a rare silver chalcogenide, was solved using intensity data collected from a twinned crystal of type material from the Prasolovskoe deposit, Kunashir Island, Kuril islands (Russia). The study revealed that the structure is trigonal, space group R ![Formula][1] , with cell parameters: a 15.8135(18), c 19.618(3) A, and V 4248.6(9) A3. The refinement had a final R index of 0.0218 for 2513 observed reflections [ I > 2σ( I )] and 0.0265 for all 2776 independent reflections and 193 parameters. Three Te sites, three Se sites, and ten Ag sites occur in the crystal structure of kurilite. The silver cations form various crystal-chemical environments, as is typical of many intermetallic compounds. The Ag positions correspond to the most pronounced probability density function ( pdf ) locations (modes) of diffusion-like paths. The d 10 silver ion distribution was determined by means of a Gram-Charlier development of the atomic displacement factors. Crystal-chemical features are discussed in relation to other copper and silver tellurides and pure metals. The disorder observed for the Ag atoms is compared to that of other natural fast ionic conductors, such as the pearceite-polybasite group minerals. On the basis of information gained from the structural characterization, the Z of the crystal-chemical formula was revised to 18 instead of 15, as previously reported. [1]: /embed/mml-math-1.gif

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.