Abstract

Twinning and detwinning are the important deformation modes in magnesium alloys during cyclic loading at room temperature. To analyze these two deformation mechanism, cyclic compression–tension experiments were performed on Mg–3Al–1Zn rolled sheet along the rolling direction. In these tests, the microstructure evolutions of a series of grains during deformation were traced by using quasi in situ electron backscatter diffraction (EBSD). Important quantities like the Schmid factors of twinning system, the fraction of twinning during compression, and the fraction of twinning after reverse loading were calculated on the basis of measured quantities. The influence of Schmid factor of twinning variants on detwinning upon reverse loading was analyzed. Detwinning would prefer to proceed during reverse loading if the Schmid factor of twinning in the twinning area before reverse loading is sufficiently large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.