Abstract
In this article, we demonstrate that a convolutional neural network (CNN) can be effectively used to determine the presence of twins in the atomic resolution scanning transmission electron microscopy (STEM) images of catalytic Au nanoparticles. In particular, the CNN screening of Hough transformed images resulted in significantly higher accuracy rates as compared to those obtained by applying this technique to the raw STEM images. The proposed method can be utilized for evaluating the statistical twining fraction of Au nanoparticles that strongly affects their catalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.