Abstract

Synergistic integration of two active metal-based compounds can lead to much higher electrocatalytic activity than either of the two individually, due to the interfacial effects. Herein, a proof-of-concept strategy is creatively developed for the successful fabrication of twinned tungsten carbonitride (WCN) nanocrystals, where W2 C and WN are chemically bonded at the molecule level. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy analyses demonstrate that the intergrowth of W2 C and WN in the WCN nanocrystals produces abundant N-W-C interfaces, leading to a significant enhancement in catalytic activity and stability for hydrogen evolution reaction (HER). Indeed, it shows 14.2 times higher and 140 mV lower in the respective turn-over frequency (TOF) and overpotential at 10 mA cm-2 compared to W2 C alone. To complement the experimental observation, the theoretical calculations demonstrate that the WCN endows more favorable hydrogen evolution reaction than the single W2 C or WN crystals due to abundant interfaces, beneficial electronic states, lower work function, and more active W sites at the N-W-C interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.