Abstract

AbstractThe homojunction induced by twin structure in semiconductors is found to be highly effective in decreasing the bulk recombination. Theoretical and experimental results have demonstrated the “back to back” potentials and directional diffusion that originate from the homojunction could facilitate the charge separation and transport of BiVO4 (BVO) single crystals. As expected, the resultant homojunction can lead to significantly enhanced photocatalytic activity. To eliminate the significant reduction of performance caused by solution mediated interface recombination on exposed fluorine‐doped tin oxide (FTO), a strategy for improving substrate coverage by a new “n‐step” method is applied. The BVO photoanode with preferable twin structure and high substrate coverage ratio reaches a photocurrent density of ≈3.1 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE) and exhibits over 1.35% half‐cell solar‐to‐hydrogen conversion efficiency at 0.6 V versus RHE. This finding offers a new and effective way of fabricating twin structures to reduce bulk recombination of BVO photoanodes, which can also be applied to other semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.