Abstract

A versatile twin-screw extrusion process to provide an efficient thermo-mechano-chemical pre-treatment on lignocellulosic biomass before using it as source of mechanical reinforcement in fully bio-based fiberboards was developed. Various lignocellulosic crop by-products have already been successfully pre-treated through this process, e.g., cereal straws (especially rice), coriander straw, shives from oleaginous flax straw, and bark of both amaranth and sunflower stems. The extrusion process results in a marked increase in the average fiber aspect ratio, leading to improved mechanical properties of fiberboards. The twin-screw extruder can also be fitted with a filtration module at the end of the barrel. The continuous extraction of various chemicals (e.g., free sugars, hemicelluloses, volatiles from essential oil fractions, etc.) from the lignocellulosic substrate, and the fiber refining can, therefore, be performed simultaneously. The extruder can also be used for its mixing ability: a natural binder (e.g., Organosolv lignins, protein-based oilcakes, starch, etc.) can be added to the refined fibers at the end of the screw profile. The obtained premix is ready to be molded through hot pressing, with the natural binder contributing to fiberboard cohesion. Such a combined process in a single extruder pass improves the production time, production cost, and may lead to reduction in plant production size. Because all the operations are performed in a single step, fiber morphology is better preserved, thanks to a reduced residence time of the material inside the extruder, resulting in enhanced material performances. Such one-step extrusion operation may be at the origin of a valuable industrial process intensification. Compared to commercial wood-based materials, these fully bio-based fiberboards do not emit any formaldehyde, and they could find various applications, e.g., intermediate containers, furniture, domestic flooring, shelving, general construction, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.