Abstract

AbstractPoly(methyl methacrylate) (PMMA)/organoclay nanocomposites prepared by melt‐compounding using a co‐rotating twin‐screw extruder were intercalated nanocomposites. Commercially available PMMA resins of various molecular weights were used for comparison. The results showed an optimum compounding temperature for maximum intercalation with balanced shear and diffusion. Higher operating temperature reduced the shear mixing effect, and might have induced early degradation of the organoclay. Lower operating temperature, in contrast, reduced the mobility of the polymer molecules, which not only hampered the intercalation attempts, but also generated high torque in the extrusion. The mechanical behavior of the nanocomposites was studied. The tensile modulus, storage modulus and glass transition temperature of the nanocomposites increased with increasing clay content; however, an associated decrease in strength and strain at break was also observed. The notched impact strength also showed a slight decrease with clay content. Nanocomposites based on the lower molecular weight PMMA yielded more significant improvement in mechanical and thermal properties at the same clay content. Copyright © 2007 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.