Abstract

Gene editing nucleases, base editors, and prime editors are potential locus specific genetic treatment strategies for recessive dystrophic epidermolysis bullosa (RDEB); however, many RDEB COL7A1 mutations are unique, making the development of personalized editing reagents challenging. 270 of the ∼320 COL7A1 EB mutations reside in exons that can be skipped, and antisense oligonucleotides (ASO) and gene editing nucleases have been used to create in-frame deletions. ASOs are transient and nucleases generate deleterious double stranded DNA breaks (DSB) and uncontrolled mixtures of allele products. We developed a twin prime editing (twinPE) strategy using the PEmax and recently evolved PE6 prime editors and dual prime editing guide RNAs flanking COL7A1 exon five. Prime editing-mediated deletion of exon 5 with a homozygous premature stop codon was achieved in RDEB fibroblasts, keratinocytes, and iPSC with minimal DSBs, and collagen type VII (C7) protein was restored. TwinPE can replace the target exon with recombinase attachment sequences, and we exploited this to re-insert a normal copy of exon 5 using the Bxb1 recombinase. These findings demonstrate that twinPE can facilitate locus-specific, predictable, in-frame deletions and sequence replacement with few DSBs as a strategy that may enable a single therapeutic agent to treat multiple RDEB patient cohorts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.