Abstract
The synthesis of precise gene delivery vehicles by solid-supported chemistry is an effective way to establish structure–activity relationships and optimize existing transfection carriers. Sequence-defined cationic oligomers with different topologies were modified with twin disulfide-forming cysteine–arginine–cysteine (CRC) motifs. The influence of this motif versus single disulfide on the biophysical properties and biological performance of polyplexes was investigated, with pDNA and siRNA as nucleic acid cargoes. Clear differences between structures with isolated cysteines and CRC motifs were observed with respect to properties like nucleic acid binding, serum stability, response to reducing agents, and gene transfer/silencing. The main observed effect of the CRC motif was to increase polyplex stability. The consequences for nucleic acid delivery were less predictable and depended on oligomer topology. For some oligomers intrinsically forming stable polyplexes (i.e., already in the absence of CRC motif), this further stabilization resulted in a reduction or even loss in transfection efficiency. For PEGylated and targeted oligomers with intrinsically less stable polyplex structures, this modification led to a significant enhancement in transfection efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.