Abstract

Exposure of austenitic stainless steels to liquid lead–bismuth eutectic with low concentration of dissolved oxygen typically results in selective leaching of highly-soluble alloying elements and ferritization of the dissolution-affected zone. In this work, focused ion beam, transmission electron backscatter diffraction and scanning transmission electron microscopy were utilized to elucidate early-stage aspects of the dissolution corrosion process of cold-worked austenitic stainless steels exposed to static, oxygen-poor liquid lead–bismuth eutectic at 450°C for 1000h. It was found that deformation-induced twin boundaries in the cold-worked steel bulk provide paths of accelerated penetration of the liquid metal into the steel bulk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.