Abstract

The purpose of this note is to show how semiparametric estimators with a small bias property can be constructed. The small bias property (SBP) of a semiparametric estimator is that its bias converges to zero faster than the pointwise and integrated bias of the nonparametric estimator on which it is based. We show that semiparametric estimators based on twicing kernels have the SBP. We also show that semiparametric estimators where nonparametric kernel estimation does not affect the asymptotic variance have the SBP. In addition we discuss an interpretation of series and sieve estimators as idempotent transformations of the empirical distribution that helps explain the known result that they lead to the SBP. In Monte Carlo experiments we find that estimators with the SBP have mean-square error that is smaller and less sensitive to bandwidth than those that do not have the SBP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.