Abstract

We prove that every graph has a spectral sparsifier with a number of edges linear in its number of vertices. As linear-sized spectral sparsifiers of complete graphs are expanders, our sparsifiers of arbitrary graphs can be viewed as generalizations of expander graphs. In particular, we prove that for every d > 1 and every undirected, weighted graph G = (V,E,w) on n vertices, there exists a weighted graph H=(V,F,~{w}) with at most ⌈d(n-1)⌉ edges such that for every x ∈ RV, [xT LG x ≤ xT LH x ≤ ((d+1+2√d)/(d+1-2√d)) • xT LG x] where LG and LH are the Laplacian matrices of G and H, respectively. Thus, H approximates G spectrally at least as well as a Ramanujan expander with dn/2 edges approximates the complete graph. We give an elementary deterministic polynomial time algorithm for constructing H.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.