Abstract
Digital health research plays a vital role in advancing equitable health care. The diversity of research teams is thereby instrumental in capturing societal challenges, increasing productivity, and reducing bias in algorithms. Despite its importance, the gender distribution within digital health authorship remains largely unexplored. This study aimed to investigate the gender distribution among first and last authors in digital health research, thereby identifying predicting factors of female authorship. This bibliometric analysis examined the gender distribution across 59,980 publications from 1999 to 2023, spanning 42 digital health journals indexed in the Web of Science. To identify strategies ensuring equality in research, a detailed comparison of gender representation in JMIR journals was conducted within the field, as well as against a matched sample. Two-tailed Welch 2-sample t tests, Wilcoxon rank sum tests, and chi-square tests were used to assess differences. In addition, odds ratios were calculated to identify predictors of female authorship. The analysis revealed that 37% of first authors and 30% of last authors in digital health were female. JMIR journals demonstrated a higher representation, with 49% of first authors and 38% of last authors being female, yielding odds ratios of 1.96 (95% CI 1.90-2.03; P<.001) and 1.78 (95% CI 1.71-1.84; P<.001), respectively. Since 2008, JMIR journals have consistently featured a greater proportion of female first authors than male counterparts. Other factors that predicted female authorship included having female authors in other relevant positions and gender discordance, given the higher rate of male last authors in the field. There was an evident shift toward gender parity across publications in digital health, particularly from the publisher JMIR Publications. The specialized focus of its sister journals, equitable editorial policies, and transparency in the review process might contribute to these achievements. Further research is imperative to establish causality, enabling the replication of these successful strategies across other scientific fields to bridge the gender gap in digital health effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.