Abstract

Wellness is a widely popular concept that is commonly applied to fitness and self-help products or services. Inference of personal wellness--related attributes, such as body mass index (BMI) category or disease tendency, as well as understanding of global dependencies between wellness attributes and users’ behavior, is of crucial importance to various applications in personal and public wellness domains. At the same time, the emergence of social media platforms and wearable sensors makes it feasible to perform wellness profiling for users from multiple perspectives. However, research efforts on wellness profiling and integration of social media and sensor data are relatively sparse. This study represents one of the first attempts in this direction. Specifically, we infer personal wellness attributes by utilizing our proposed multisource multitask wellness profile learning framework—WellMTL—which can handle data incompleteness and perform wellness attributes inference from sensor and social media data simultaneously. To gain insights into the data at a global level, we also examine correlations between first-order data representations and personal wellness attributes. Our experimental results show that the integration of sensor data and multiple social media sources can substantially boost the performance of individual wellness profiling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.