Abstract

BackgroundProinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 are the major regulators of skeletal muscle mass in many catabolic conditions. However, their role in muscle metabolism remains largely unknown. In the present study, we investigated the role of TWEAK on exercise capacity and skeletal muscle mitochondrial content and oxidative metabolism.MethodsWe employed wild-type and TWEAK-knockout (KO) mice and primary myotube cultures and performed biochemical, bioenergetics, and morphometric assays to evaluate the effects of TWEAK on exercise tolerance and muscle mitochondrial function and angiogenesis.ResultsTWEAK-KO mice showed improved exercise tolerance compared to wild-type mice. Electron microscopy analysis showed that the abundance of subsarcolemmal and intermyofibrillar mitochondria is significantly increased in skeletal muscle of TWEAK-KO mice compared to wild-type mice. Furthermore, age-related loss in skeletal muscle oxidative capacity was rescued in TWEAK-KO mice. Expression of a key transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and several other molecules involved in oxidative metabolism were significantly higher in skeletal muscle of TWEAK-KO mice. Moreover, treatment of primary myotubes with soluble TWEAK inhibited the expression of PGC-1α and mitochondrial genes and decreased mitochondrial respiratory capacity. Deletion of TWEAK also improved angiogenesis and transcript levels of vascular endothelial growth factor in skeletal muscle of mice.ConclusionsThese results demonstrate that TWEAK decreases mitochondrial content and oxidative phosphorylation and inhibits angiogenesis in skeletal muscle. Neutralization of TWEAK is a potential approach for improving exercise capacity and oxidative metabolism in skeletal muscle.

Highlights

  • Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 are the major regulators of skeletal muscle mass in many catabolic conditions

  • Since TWEAKKO mice could keep running on higher speed (30.6 m/ minute for TNF-like weak inducer of apoptosis (TWEAK)-KOs versus 25.5 m/minute for the controls, Figure 1B), the difference in running distance became greater than 47% (463 meter for TWEAK-KOs versus 314 meter for the controls, Figure 1C)

  • TWEAK-KO mice demonstrate increased expression of Peroxisome proliferator-activated receptor (PPAR) coactivator 1α (PGC-1α) and metabolic genes in skeletal muscle To understand the mechanisms by which TWEAK affects exercise capacity and mitochondrial content in skeletal muscle, we investigated whether TWEAK modulates the expression of PGC-1α, a critical regulator of the mitochondrial biogenetic program in skeletal muscle [9,10]

Read more

Summary

Introduction

Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 are the major regulators of skeletal muscle mass in many catabolic conditions. Their role in muscle metabolism remains largely unknown. We investigated the role of TWEAK on exercise capacity and skeletal muscle mitochondrial content and oxidative metabolism. Forced expression of PGC-1α preserves skeletal muscle mass in various catabolic states including denervation [11,12]. PGC-1α improves mitochondrial biogenesis by coactivating nuclear respiratory factor (NRF)-1 [13], NRF-2 [14] and estrogen-related receptor α [15,16,17] which, in turn, augments the expression of hundreds of nuclear-coded mitochondrial genes [18]. Preserving mitochondria content and function is essential to countering muscle wasting and to improving muscle homeostasis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call