Abstract

Functional peptides derived from the active domains of odontogenesis-related proteins have been reported to promote dental hard tissue regeneration. The purpose of this study was to evaluate the effects of an artificially synthesized peptide, TVH-19, on odontoblast differentiation and tertiary dentin formation in indirect pulp capping (IPC) using in vitro and in vivo experiments. TVH-19 did not exhibit any effect on the proliferation of human dental pulp cells (hDPCs) but significantly promoted cell migration, compared with the control (p < 0.05). TVH-19-treated hDPCs showed significantly higher alkaline phosphatase (ALP) activity and stronger alizarin red staining (ARS) reactivity than the control group (p < 0.05). TVH-19 also upregulated the mRNA and protein expression levels of odontogenic genes. After generating IPC in rats, the samples of teeth were studied using micro-computed tomography (Micro-CT), hematoxylin & eosin (HE) staining, and immunohistochemical staining to investigate the functions of TVH-19. The in vivo results showed that TVH-19 induced the formation of tertiary dentin, and reduced inflammation and apoptosis, as evident from the downregulated expression of interleukin 6 (IL-6) and cleaved-Caspase-3 (CL-CASP3). Overall, the results of our study suggest that TVH-19 induces differentiation of hDPCs, promotes tertiary dentin formation, relieves inflammation, and reduces apoptosis, indicating the potential applications of TVH-19 in IPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.