Abstract

Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.