Abstract
BackgroundProtein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs); RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite.ResultsA full-length cDNA (Tv-rio-1) encoding a RIO1 protein kinase (Tv-RIO1) was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida). The uninterrupted open reading frame (ORF) of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3), and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1).ConclusionThis study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes.
Highlights
Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions
Comparisons with sequences in non-redundant databases conducted by BLASTx analysis showed that TvRIO1 has significant similarities to related sequences from a range of organisms, including other nematodes, insects, vertebrates and plants, the vast majority of them have yet to be characterised
The highest amino acid similarities recorded were to the proteins inferred from C. briggsae gene CBG4203 (e-value: 1e-150; 60% of identity and 74% of similarity) and from C. elegans gene M01B12.5 (e-value: 1e-150; 60% of identity and 73% of similarity), recognized as the RIO1 protein kinase
Summary
Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. Parasites & Vectors 2008, 1:34 http://www.parasitesandvectors.com/content/1/1/34 residues, playing functional roles in reversible protein phosphorylation In organisms, such as Homo sapiens, Mus musculus, Drosophila melanogaster (vinegar fly), Caenorhabditis elegans (worm), Saccharomyces cerevisiae (yeast), Dictyostelium discoideum (slime mould) and Plasmodium falciparum (malaria parasite), the complete complement of protein kinases has been identified via the analysis of genome sequences [2]. Based on their structure, protein kinases can be classified into two main groups, namely eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs) [3]. These serine kinases are conserved in sequence among a range of different organisms, yet are quite divergent from kinases of other families with known structures [5,6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.