Abstract

It is well-known that the Jones polynomial of an alternating knot is closely related to the Tutte polynomial of a special graph obtained from a regular projection of the knot. Relying on the results of Bollobás and Riordan, we introduce a generalization of Kauffman's Tutte polynomial of signed graphs for which describing the effect of taking a signed tensor product of signed graphs is very simple. We show that this Tutte polynomial of a signed tensor product of signed graphs may be expressed in terms of the Tutte polynomials of the original signed graphs by using a simple substitution rule. Our result enables us to compute the Jones polynomials of some large non-alternating knots. The combinatorics used to prove our main result is similar to Tutte's original way of counting "activities" and specializes to a new, perhaps simpler proof of the known formulas for the ordinary Tutte polynomial of the tensor product of unsigned graphs or matroids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call