Abstract

While object recognition is one of the prevalent affordances of humans' perceptual systems, even human infants can prioritize a place system over the object recognition system, that is used when navigating. This ability, combined with active learning strategies can make humans fast learners of Turtle Geometry, a notion introduced about four decades ago. We contrast humans' performances and learning strategies with large visual language models (LVLMs) and as we show, LVLMs fall short of humans in solving Turtle Geometry tasks. We outline different characteristics of human-like learning in the domain of Turtle Geometry that are fundamentally unparalleled in state-of-the-art deep neural networks and can inform future research directions in the field of artificial intelligence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.