Abstract
Event segmentation is a neurocognitive process bridging perception and episodic memory. To our knowledge, almost all segmentation work is framed towards humans, yet evolutionarily conserved mechanisms in event cognition exist across species. Here, we addressed segmentation in a way that is applicable to humans and non-human animals, inspired by research in rats; specifically, the fragmentation of grid-cell spatial representations following the insertion of boundaries into an environment (forming a corridor maze). Participants indicated when they felt a meaningful unit of activity ended and another began, while watching an agent traverse from a first-person perspective. A virtual corridor maze (experiment 1) and two other mazes were used (experiment 2), with participants viewing/segmenting the same stimuli twice. We found that people segmented more during turns relative to corridors, with elevated segmentation occurring in discrete moments around turns. Interestingly, we also found that boundaries of the corridor maze facilitated an increase in segmentation within and across viewings. These results suggest that segmentation can be driven by recognized repeating activity that can become more meaningful over time, highlighting an important link between event segmentation and pattern separation that is relevant to many species in their formation of episodic-(like) memory.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.