Abstract

In this work we study the structure of approximate solutions of an autonomous discrete-time control system with a compact metric space of states X . This control system is described by a bounded upper semicontinuous function v : X × X → R 1 which determines an optimality criterion and by a nonempty closed set Ω ⊂ X × X which determines a class of admissible trajectories (programs). We are interested in turnpike properties of the approximate solutions which are independent of the length of the interval, for all sufficiently large intervals. For when X is a compact convex subset of a finite-dimensional Euclidean space, the set Ω is convex and the function v is strictly concave we obtain a full description of the structure of approximate solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.