Abstract

The rate of turnover of nicotinamide adenine dinucleotide (NAD) in the human cell line, D98/AH2, has been estimated by measuring the rates of entry into and exit from NAD molecules of 14C-adenine. In one set of experiments, cells were labeled by growth in medium containing 14C-adenine for six hours and then shifted to medium without labeled adenine. The loss of 14C-adenine from the adenine nucleotide and pyridine nucleotide pools was measured, and the data were analyzed using an analytical treatment which corrects for the relatively slow turnover of precursor pools. The loss of 14C-adenine from the NAD pool and from the precursor ATP pool could be related to the absolute rate of NAD breakdown. Under the experimental conditions used, the rate of NAD turnover ranged from 83,000 to 126,000 molecules per second per cell. In a complementary experiment cells were grown in the presence of unlabeled adenine, then shifted into medium containing 14C-adenine and the rate of entry of 14C-adenine into adenine and pyridine nucleotides was measured. The data were treated using a similar analysis to relate the rate of entry of 14C-adenine into NAD and the precursor ATP pools to the absolute turnover rate of NAD. This analysis gave a value for NAD turnover of 78,000 molecules per second per cell in excellent agreement with results from the pulse-chase experiments. The results from both types of experiment indicate that within D98/AH2 cells the half-life of an intact NAD molecule is 60 +/- 18 minutes. Thus, in a human D98/AH2 cell growing with a generation time of 24 hours, NAD is turning over at twice the rate found in Escherichia coli with a generation time of half an hour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call