Abstract

Type II pulmonary epithelial cells in primary culture synthesize and assemble a multicomponent extracellular matrix which exhibits biological activity in vitro. Simultaneously, the pneumocytes degrade components of the underlying matrix, such that matrix composition may be determined by the balance of synthesis and turnover. The present work defines turnover of the specific matrix glycoproteins, fibronectin and laminin, both in the type II cell and in its extracellular matrix. Pulse-chase experiments demonstrate that both fibronectin and laminin, identified by immunoprecipitation, turn over rapidly in the cell and extracellular matrix compartments, with half-lives < 10 h. In the cell compartment, initial rates of laminin turnover are more rapid than those of fibronectin on culture day 2, but these rates are similar on day 6. Matrix fibronectin also turns over rapidly, with similar rates on day 2 and day 6. During the chase interval, small but increasing amounts of immunoprecipitable fibronectin are detected in the medium, suggesting that a portion of the glycoprotein may be released to the extracellular compartment, rather than degraded. Alternatively, release of immunoreactive glycoprotein may involve ongoing processing and secretion of residual radiolabeled fibronectin by the cells. The results suggest that matrix composition may be determined by turnover, as well as synthesis, of its components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.