Abstract
AbstractPhosphorus loading to the Everglades from nearby agricultural areas has become a major concern, and is considered to be a significant factor in the encroachment of cattail (Typha domingensis Pers.) and other rapidly growing vegetation into endemic sawgrass (Cladium jamaicense Crantz) marsh. The objectives of this research were to evaluate the variability in turnover of organic C in plant and soil detrital pools along a P enrichment gradient in an Everglades marsh and to identify substrate characteristics and environmental factors controlling C turnover. Potential rates of C mineralization in plant litter and peat were determined by measuring aerobic and anaerobic microbial respiration under controlled conditions in laboratory incubations. Potential C mineralization decreased with depth and, consequently, substrate age, in the plant‐soil profile. Within individual detrital pools [standing dead plant material, soil litter layer, surface peat (0–10 cm depth) and subsurface peat (10–30 cm depth)], potential C mineralization decreased down gradient from the source of nutrient loading to WCA‐2A. Overall, 91% of the variability in aerobic C mineralization in peat and plant litter was accounted for by substrate P concentration and lignocellulose composition. Anaerobic C mineralization rates were consistently about one‐third of aerobic rates. Results indicated that organic C turnover in detrital pools in WCA‐2A is significantly affected by accelerated P loading, but is also controlled by O2 availability and substrate C quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.