Abstract

Turnout is one key fundamental infrastructure in the railway signal system, which has great influence on the safety of railway systems. Currently, turnout fault diagnoses are conducted manually in China; engineers are obliged to observe the signals and make problem solving decisions. Thus, the accuracies of fault diagnoses totally depend on the engineers’ experience although massive data are produced in real time by the turnout microcomputer-based monitoring systems. This paper aims to develop an intelligent diagnosis method for railway turnout through Dynamic Time Warping (DTW). We firstly extract the features of normal turnout operation current curve and normalize the collected turnout current curves. Then, five typical fault reference curves are ascertained through the microcomputer-based monitoring system, and DTW is used to identify the turnout current curve fault through test data. The analysis results based on the similarity data indicate that the analyzed five turnout fault types can be diagnosed automatically with 100% accuracy. Finally, the benefits of the proposed method and future research directions were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.