Abstract

Naphthalimide–benzothiazole conjugate (NBTZ) linked by cinnamonitrile was designed, synthesized, and fully characterized by NMR (1H, 13C, DEPT, HSQC) and high-resolution mass spectrometry. NBTZ exhibited unique turn-on fluorescence in the presence of CN− with relatively high selectivity compared to other anions such as SCN−, HSO4−, ClO4−, NO3−, Cl−, Br−, I−, and PO4−3 in tetrahydrofuran (THF). The detection limit for CN− was found to be 3.35 × 10−8 M in THF. The sensing mechanism was analyzed through 1H, 13C, DEPT, and mass spectroscopy. NBTZ also showed two-mode aggregation-induced emission (AIE) in THF–H2O mixtures. In a 30:70 THF–H2O (v/v) mixture, the maximum AIE was observed at 430 nm (blue) because of the rotation of the CC bond between the naphthalimide ring and the phenyl ring was restricted. In 10:90 THF–H2O (v/v), a new red-shifted AIE appeared at 490 nm (cyan), due to the extended π-conjugation induced by restriction of rotation of the CC bond between the benzothiazole and naphthalimide rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.