Abstract

Carbon neutrality is one of the central topics of not only the scientific community but also the majority of human society. The development of highly efficient carbon dioxide (CO2) capture and utilization (CCU) techniques is expected to stimulate routes and concepts to go beyond fossil fuels and provide more economic benefits for a carbon-neutral economy. While various single-carbon (C1) and multi-carbon (C2+) products have been selectively produced to date, the scope of CCU can be further expanded to more valuable chemicals beyond simple carbon species by integration of nitrogenous reactants into CO2 reduction. In this Review, research progress toward sustainable production of high-value-added chemicals (urea, methylamine, ethylamine, formamide, acetamide, and glycine) from catalytic coupling of CO2 and nitrogenous small molecules (NH3, N2, NO3-, and NO2-) is highlighted. C-N bond formation is a key mechanistic step in N-integrated CO2 reduction, so we focus on the possible pathways of C-N coupling starting from the CO2 reduction and nitrogenous small molecules reduction processes as well as the catalytic attributes that enable the C-N coupling. We also propose research directions and prospects in the field, aiming to inspire future investigations and achieve comprehensive improvement of the performance and product scope of C-N coupling systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.