Abstract

Strongly correlated systems pose a challenge for theoretical methods based on an independent electron approximation. Such methods struggle to predict a nonzero gap in Mott insulators or to capture the correct physics of the insulator-to-metal phase transition in strongly correlated materials. In a recent paper by Shinohara et al (2015 New J. Phys. 17 093038) it is shown that strongly correlated materials and correct descriptions of their phase transitions are within the reach of reduced density matrix functional theory (RDMFT) approximations. For a doping-induced phase transition, not only is a satisfactory agreement with experimental spectra found for NiO but it is also shown that the physical picture of the observed Mott transition stays in line with more computationally demanding many-body theories. This is an important step toward providing an RDMFT–based computation tool for studying strongly correlated materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.