Abstract

Abstract The objective of this study is to analyse the effect of tool-work interface temperature observed during the turning of AISI 4340 cylindrical steel components in three machining conditions, namely flooded, near-dry and dry conditions with three separate CNMG-PEF 800 diamond finish Titanium Nitride (TiN) coated carbide cutting tool. The machining parameters considered in this study are cutting velocity, feed rate and depth of cut. The experiments were planned based on full factorial design (33) and executed in an All Geared Conventional Lathe. The tool-work interface temperature was observed using a K-type tool-work thermocouple, while the machining of steel, and subsequently, a mathematical model was developed for the tool-work interface temperature values through regression analysis. The significance of the selected machining parameters and their levels on tool-work interface temperature was found using analysis of variance (ANOVA) and F-test. The results revealed that machining under near-dry condition exhibited lesser temperature at the tool-work interface, which is the sign of producing better quality products in equivalence with the machining under flooded condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.