Abstract

The synthesis, structure, and magnetic properties are reported for a new manganese compound with a mixed-valent {Mn(3)} core arranged in a linear fashion. The previously reported complex 1, [Mn(IV)(3)(dpo)(6)]·2MeCN, where H(2)dpo is (E)-1-hydroxy-1,1-diphenylpropan-2-one oxime, served as a starting point for the isolation of a {Mn(3)} compound with an analogous core arrangement through the reaction of Mn(OAc)(2)·4H(2)O, H(3)oxol ((E)-2,5-dihydroxy-2,5-dimethylhexan-3-one oxime), and NaOH in MeOH and MeCN. By using these reaction conditions, compound 2, Na[Mn(IV)(2)Mn(III)(Hoxol)(6)](n)·MeOH·H(2)O, was successfully isolated revealing a central Mn(III) ion thereby introducing structural and magnetic anisotropy to the system. The structure of 2 reveals linear trinuclear Mn(IV)-Mn(III)-Mn(IV) units connected through Na(+) ions forming a linear one-dimensional coordination polymer. The Jahn-Teller axes of each trinuclear unit are aligned parallel within the same chain and form a 75° angle between the two symmetry related chains. Magnetic susceptibility measurements of 1 and 2 in the temperature range 1.9-300 K reveal that only the reduced compound, 2, is a single-molecule magnet (SMM) largely due to the anisotropy introduced by the Jahn-Teller distortions on the Mn(III) ions, which effectively induce this magnet behavior. Weak antiferromagnetic interactions along the chains through the Na(+) cations lead to a modulation of the intrinsic properties of the Mn(IV)-Mn(III)-Mn(IV) SMMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.