Abstract

In this paper, the machinability of high-strength glass–fiber reinforced plastics (GFRP) materials in turning with chamfered main cutting edge of P and K type carbide tools have been investigated experimentally. Chip formation mechanisms have been obtained with respect to tip's geometries and nose radii. Experimental results for cutting forces were also taken with GFRP as the workpiece material. Force data from these tests were used to estimate the empirical constants of the mechanical model and verify its prediction capabilities. The results show good agreement between the predicted and measured forces. In this study, the nose radius R = 0.3 mm induces a decrease of the cutting force and the smallest cutting force values was achieved in the case of C s = 20°, α S1( α S2) = −10°(10°) and R = 0.3 mm. Comparing the different P and K type of tools, K type tool is better than P type of chamfered main cutting edge tools. The theoretical values of cutting forces were calculated and compared with the experimental results; the forces predicted by this model were consistent with the experimental values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call