Abstract
The industrial implementation of Magnetic Density Separation (MDS) in the recycling of raw materials requires more than just the science of understanding why it works ('know-why') and the technology of how that can be accomplished ('know-how'). In addition, detailed knowledge of the market for streams of end-of-life products (supply side) and the market for recycled raw materials (demand side) are paramount to optimize the practical implementation and the design of an industrial plant. Indeed, in such a plant MDS is used to separate mixed streams of recycled materials into product streams which comply with market demands on grade and purity of the product compared with virgin streams. A recently developed non-linear innovation model is used to connect four fundamental cycles which continuously interact in the process of turning MDS technology into green business. The strength of this Cyclic Innovation Model lies in connecting technical capabilities with societal market needs. Only when a good match between the two is found a new technology such as, MDS develop into an innovation. The separation of polyolefins from end-of-life product is selected as one of the first industrial-sized applications of MDS in recycling. CIM is used to identify opportunities and challenges which need to be addressed to turn the MDS technology into an innovation that builds an economically attractive business in the context of a green society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.