Abstract

Stimuli-responsive luminogens with aggregation-induced emission and excited state intramolecular proton transfer (ESIPT) properties have applications in storage devices, anti-counterfeiting, imaging, and sensors. Nevertheless, group rotation appears in twisted intramolecular charge transfer (TICT) state, resulting in decreased fluorescence intensity. Inhibiting TICT remains a challenge based on their intrinsic molecular configuration. Herein, we present a simple facile pressure-induced method to restrict the TICT behavior. Steady-state spectroscopy measurement shows that fluorescence enhancement and color shifts can be achieved under high pressure. Combined with in situ high-pressure ultrafast spectroscopy and theoretical calculations, the TICT behavior was restricted in two aspects. The ESIPT process was damaged, hence more particles stored in the E* state, and transferred to the TICT state hardly. Also, the rotation of (E)-dimethyl5-((4-(diethylamino)-2-hydroxybenzylidene)amino)isophthalate (SBOH) was restricted, significantly increasing the fluorescence intensity. This approach provides a new strategy for the development of stimulus-responsive materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.