Abstract

Stimuli-responsive luminogens with aggregation-induced emission and excited state intramolecular proton transfer (ESIPT) properties have applications in storage devices, anti-counterfeiting, imaging, and sensors. Nevertheless, group rotation appears in twisted intramolecular charge transfer (TICT) state, resulting in decreased fluorescence intensity. Inhibiting TICT remains a challenge based on their intrinsic molecular configuration. Herein, we present a simple facile pressure-induced method to restrict the TICT behavior. Steady-state spectroscopy measurement shows that fluorescence enhancement and color shifts can be achieved under high pressure. Combined with in situ high-pressure ultrafast spectroscopy and theoretical calculations, the TICT behavior was restricted in two aspects. The ESIPT process was damaged, hence more particles stored in the E* state, and transferred to the TICT state hardly. Also, the rotation of (E)-dimethyl5-((4-(diethylamino)-2-hydroxybenzylidene)amino)isophthalate (SBOH) was restricted, significantly increasing the fluorescence intensity. This approach provides a new strategy for the development of stimulus-responsive materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call