Abstract
We implemented a novel visual navigation method for autonomous mobile robots, which is based on the results of semantic segmentation. The novelty of this method lies in its control strategy used for a robot during road-following: the robot moves toward a target point determined through semantic information. Previous implementations of the method sometimes failed to turn at an intersection owing to a fixed value of the turning angle. To address this issue, this study proposes a novel method for turning at an intersection using a control method based on a target point, which was originally developed for road-following. Here, an intersection is modeled as consisting of multiple straight roads. Evaluation using the CARLA simulator showed that the proposed method could accurately estimate the parameters representing a virtual road composing an intersection. In addition, run experiments conducted at the Ikuta Campus of Meiji University using an actual robot confirmed that the proposed method could appropriately make turns at intersections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.