Abstract

Turnaround time (TAT) is an essential performance indicator of a medical diagnostic laboratory. Accurate TAT prediction is crucial for taking timely action in case of prolonged TAT and is important for efficient organization of healthcare. The objective was todevelop a model to accurately predict TAT, focusing on the automated pre-analytical and analytical phase. A total of 90,543 clinical chemistry samples from Erasmus MC were included and 39 features were analyzed, including priority level and workload in the different stages upon sample arrival. PyCaret was used toevaluate and compare multiple regression models, including the Extra Trees (ET) Regressor, Ridge Regression and K Neighbors Regressor, to determine the best model forTAT prediction. The relative residual and SHAP (SHapley Additive exPlanations) values were plotted formodel evaluation. The regression-tree-based method ET Regressor performed best with an R2 of 0.63, a mean absolute error of2.42min and a mean absolute percentage error of 7.35%,where the average TAT was 30.09min. Of the test setsamples, 77% had a relative residual error of at most 10%. SHAP value analysis indicated that TAT was mainly influenced by the workload in pre-analysis upon sample arrival and the number of modules visited. Accurate TAT predictions were attained with the ET Regressor and features with the biggest impact on TAT were identified, enabling the laboratory to take timely action in case of prolonged TAT and helping healthcare providers to improve planning of scarce resources to increase healthcare efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.