Abstract

Even though significant efforts have been spent in recent years to understand and define the determinants of in vivo potency and clearance, important pieces of information are still lacking. By introducing target turnover into the reasoning, we open up to further the understanding of central factors important to the optimization of translational dose-concentration-response predictions. We describe (i) new (open model) expressions of the in vivo potency and efficacy parameters, which embody target turnover, binding, and complex kinetics, also capturing full, partial, and inverse agonism and antagonism; (ii) a detailed examination of open models to show what potency and efficacy parameters have in common and how they differ; and (iii) a comprehensive literature review showing that target turnover rate varies with age, species, tissue/subregion, treatment, disease state, hormonal and nutritional state, and day-night cycle. The new open model expression, which integrates system and drug properties, shows the following. Fractional turnover rates rather than the absolute target or ligand-target complex expression determine necessary drug exposure via in vivo potency. Absolute ligand-target expression determines the need of a drug, based on the transduction ρ and in vivo efficacy parameters. The free enzyme concentration determines clearance and maximum metabolic rate. The fractional turnover rate determines time to equilibrium between substrate, free enzyme, and complex.The properties of substrate, target, and the complex demonstrate nonsaturable metabolic behavior at equilibrium. Nonlinear processes, previously referred to as capacity- and time-dependent kinetics, may occasionally have been disequilibria. Finally, the open model may pinpoint why some subjects differ in their demand of drug. SIGNIFICANCE STATEMENT: Understanding the target turnover is a central tenet in many translational dose-concentration-response predictions. New open model expressions of in vivo potency, efficacy parameter, and clearance are derived and anchored onto a comprehensive literature review showing that target turnover rate varies with age, species, tissue/subregion, treatment, disease, hormonal and nutritional state, day-night cycle, and more. Target turnover concepts will therefore significantly impact fundamental aspects of pharmacodynamics and pharmacokinetics, thereby also the basics of drug discovery, development, and optimization of clinical dosing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.