Abstract

A turn-off failure mode in individual MOS-controlled thyristors (MCTs), initiated by a long gate voltage rise-time, is identified and analyzed. It is shown to be caused by turn-off current crowding in the MCT. In addition, a differential failure mode in paralleled devices is demonstrated in which the slower of the two MCTs fails to turn off. This is caused by the increase in anode current through the slower device and the decrease in gate voltage rise-time due to the MCTs Miller capacitance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.