Abstract
For an odd integer k, let Ck={C3,C5,…,Ck} denote the family of all odd cycles of length at most k and let C denote the family of all odd cycles. Erdős and Simonovits [10] conjectured that for every family F of bipartite graphs, there exists k such that ex(n,F∪Ck)∼ex(n,F∪C) as n→∞. This conjecture was proved by Erdős and Simonovits when F={C4}, and for certain families of even cycles in [14]. In this paper, we give a general approach to the conjecture using Scott's sparse regularity lemma. Our approach proves the conjecture for complete bipartite graphs K2,t and K3,3: we obtain more strongly that for any odd k⩾5,ex(n,F∪{Ck})∼ex(n,F∪C) and we show further that the extremal graphs can be made bipartite by deleting very few edges. In contrast, this formula does not extend to triangles – the case k=3 – and we give an algebraic construction for odd t⩾3 of K2,t-free C3-free graphs with substantially more edges than an extremal K2,t-free bipartite graph on n vertices. Our general approach to the Erdős–Simonovits conjecture is effective based on some reasonable assumptions on the maximum number of edges in an m by n bipartite F-free graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.