Abstract

Gierer–Meinhardt system is a molecularly plausible model to describe pattern formation. When gene expression time delay is added, the behavior of the Gierer–Meinhardt model profoundly changes. In this paper, we study the delayed reaction–diffusion Gierer–Meinhardt system with Neumann boundary condition. Necessary and sufficient conditions for the occurrence of Turing instability, Hopf bifurcation and Turing–Hopf bifurcation deduced by diffusion and gene expression time delay are obtained through linear stability analysis and root distribution of the characteristic equation with two transcendental terms. With the aid of the normal form Turing–Hopf bifurcation and numerical simulations, we theoretically and numerically obtain the expected solutions including stable spatially inhomogeneous steady states, stable spatially homogeneous periodic orbit and stable spatially inhomogeneous periodic orbit from Turing–Hopf bifurcation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.