Abstract

Abstract In this article, we construct a compact Riemannian manifold of high dimension on which the time-dependent Euler equations are Turing complete. More precisely, the halting of any Turing machine with a given input is equivalent to a certain global solution of the Euler equations entering a certain open set in the space of divergence-free vector fields. In particular, this implies the undecidability of whether a solution to the Euler equations with an initial datum will reach a certain open set or not in the space of divergence-free fields. This result goes one step further in Tao’s programme to study the blow-up problem for the Euler and Navier–Stokes equations using fluid computers. As a remarkable spin-off, our method of proof allows us to give a counterexample to a conjecture of Moore dating back to 1998 on the non-existence of analytic maps on compact manifolds that are Turing complete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call